八大数据分析模型

模型是指对于某个实际问题或客观事物、规律进行抽象后的一种形式化表达方式。任何模型都有三个部分组成:目标、变量和关系。明确变量,改变变量,即可直接呈现结果,实现目标。在日常的数据分析中,我们常用的有8大模型(用户模型、事件模型、漏斗分析模型、热图分析模型、自定义留存分析模型、粘性分析模型、全行为路径分析模型、用户分群模型),从今天起,我们为大家逐一解读这八大模型,本文先从用户模型说起。

(一)用户模型

一、什么是用户模型?

先用3句话来说明为什么用户模型是基础的分析模型,重要到要第一个来分析:因为如果你不知道自己的用户是谁,就不知道该提供什么服务;不清楚用户与你“交往”到哪个阶段了,就不可能知道优先提供什么样的服务;营销战略无法聚焦,服务没有系统性和持续性,因此,我们先从定义开始,科普下什么是用户模型以及传统方式如何构建用户模型。

用户模型(Persona)是Alan Cooper在《About Face:交互设计精髓》一书中提到的研究用户的系统化方法。它是产品经理、交互设计师了解用户目标和需求、与开发团队及相关人交流、避免设计陷阱的重要工具。

传统的用户模型构建方式:

Alan Cooper提出了两种构建用户模型的方法:

-用户模型:基于对用户的访谈和观察等研究结果建立,严谨可靠但费时;

-临时用户模型:基于行业专家或市场调查数据对用户的理解建立,快速但容易有偏颇。

1、基于访谈和观察的构建用户模型(正统方法)

在Alan Cooper的方法中,对用户的访谈和观察是构建用户模型的重要基础。完整步骤如下:

1.webp.jpg

2、构建临时用户模型(ad hoc persona)

在缺乏时间、资源不能做对用户的访谈和观察时,可以基于行业专家对用户的理解、或市场研究中获得的人口统计数据,建立「临时用户模型」。

2.webp.jpg

「临时用户模型」的构建过程与「用户模型」的构建过程很像,只是「用户模型」的数据基础来自对真实用户的访谈和观察,「临时用户模型」则来自对用户的理解。二者的准确度和精度都有差别。

二、基于行为数据构建用户模型

距离Alan Cooper首次提出用户模型(Persona)概念已过去近20年,在这期间,软件产品开发的过程方法以及公司的运作方式都发生了很大改变:以快速迭代为特点的敏捷开发方法取代了传统的瀑布模型,以「开发→测量→认知」反馈循环为核心的精益创业方法在逐步影响和改变公司的运作方式。

而传统的用户模型构建方法,从诞生之日起并未发生特别大的变化。对于已经习惯了敏捷、快速的产品经理和交互设计师来说,如果花很长时间去研究用户构建用户模型需要下相当大的决心、更需要下很大力气才能争取到所需的时间和资源,而且互联网产品冷启动耗费的时间越来越短,为了降低成本和风险,产品团队在启动期往往会选择尽快将产品推向用户,尽快获得反馈以「快速试错」,现实和压力迫使大多数新产品的PM不敢投入大量时间精力深入的进行用户研究。

这就很容易理解,为什么大家都觉得用户模型很好,却鲜有人在工作中真正运用它。为了解决时间紧迫与精力不足的矛盾,我们提出了一种基于用户行为数据的快速、迭代构建用户模型的轻量方法。

3.webp.jpg

首先,整理和收集已经获得的任何可认知用户的经验和数据,包括:您和所在团队对用户的理解;产品的业务数据库中记录的用户相关信息(比如用户的性别、年龄、等级等属性),用户(在产品内外)填写的任何表单或留下来的信息(比如用户填写的调查问卷、留下的微信账号等)。

4.webp.jpg

我们将这些信息映射成为用户的描述信息(属性)或用户的行为信息,并存储起来形成用户档案(如下图所示)。

5.webp.jpg

诸葛io新零售DEMO之用户档案(虚拟数据)

如上图所示,从用户档案中我们可以清楚的了解到用户的属性信息、行为数据、环境数据。

三、基于行为数据构建用户模型的优势

1、高效实时 洞察先机

在数据世界里,准确性就是一切,速度更是至关重要,分析系统处理和解释这些信息的速度越快,就能更快地且清晰掌握业务状况,帮助企业更早的做出决策判断,比如我们的客户——某共享单车,正是因为发现了实时数据指标中的异常波动:次日留存用户数出现了“断崖式”下跌,经紧急调查发现是竞争对手在低价拉新,因此,运营团队第一时间采取积极应对,从而保住了该城市的市场占有率。同样的,市场变幻风起云涌,运营人、决策者都需要实时关注自身数据的波动,因为失败往往都来自一个微小的疏忽。

2、记录历史而不只是结果

行为即标签,过去我们常常通过给用户打标签的方式进行用户洞察。事实上,行为数据本身已变得越来越有价值,基于用户行为数据的用户模型,记录了每个用户的每一次行为,客观真实的还原了用户与产品的交互过程,与单纯的标记“用户标签”相比,记录下来的用户行为数据更具有多维交叉分析的价值,构建出来的单个用户画像更完整科学。

3、360°覆盖用户全生命周期的用户档案

基于用户行为数据的用户模型是实时动态变化的,随着用户在产品中的成长,从访客到陌生人最后成为高价值用户,用户的每一步成长都通过行为记录下来,基于用户所在生命周期的不同阶段,针对新用户、流失用户、活跃用户、沉默用户分别采取有针对性的拉新、转化、留存等运营策略。

6.webp.jpg

为延长用户的生命周期价值(LTV),就必须采集到用户全生命周期的数据,打通CRM数据、历史数据、业务数据、第三方数据,将用户的属性信息(性别、年龄、国家等)与用户的行为数据关联到一起;打通外部推广平台的数据,解决用户从哪儿来的问题;打通不同产品平台的数据,将用户在app\小程序\微站\官网上的行为实时同步,如此方可实现真正的以用户为中心的统计和分析。

本文提供了一种借助行为数据和工具快速、迭代的构建用户模型(Persona)的方法更适合今天的互联网团队的工作方式和节奏,基于用户行为数据的用户模型,一方面对传统方式进行了简化,降低了数据分析的门槛;另一方面,让数据分析更科学更高效更全面,更直接地应用于业务增长,指导运营决策。

 

(二)事件模型

一、什么是事件?

在日常工作中,不同岗位、不同角色所关注的事件各不相同,比如,市场人员可能关注点击进入落地页的人数以及进入落地页后用户是否点击核心按钮,比如“立即注册/立即购买”等?运营人员可能更关注某次邀请好友活动中老用户是否点击该活动页面,是否将邀请海报分享到朋友圈?PM可能更关心新功能上线后用户是否点击打开?在洞察诸如此类的指标过程中,事件模型就起到了至关重要的作用。

那么,什么叫做“事件”呢?简单讲,就是用户在产品上的行为,它是用户行为的一个专业描述,用户在产品上的所有获得的程序反馈都可以抽象为事件,由开发人员通过埋点进行采集,通俗讲就是:将一段代码放入对应的页面/按钮,用户进入页面/点击按钮的本质是在加载背后的代码,同时再加载事件采集代码,这样就被SDK所记录下来了。

二、事件的采集

其实,要说明白事件模型这个事,就像我们写作文,记叙文的六要素:时间、地点、人物,起因、经过、结果,也就是:谁,在什么时间,在哪儿做了一件什么事儿,相应的,数据分析就像是通过数据/指标来讲述用户与产品之间的故事,我们举个例子来说明。

1.webp.jpg

某电商JS平台-商品详情页

如上图所示:当用户点击进入苹果7 plus手机的商品详情页时,用户可能发起的行为有:点击选择了颜色:黑色,选择了版本128G,选择了购买方式:联通优惠购,选择了优惠类型:买手机省话费,这一系列行为都需要分别采集下来,如果该电商经营的数码产品品类达上千SKU,相应的就有上千个商品详情页,那么,如果每一页都按照上文中的埋点采集方式来操作,那无疑是一项庞大的工作,该如何让事件采集更高效、更有可操作性呢?

为了最大化还原用户使用场景,我们引入3个概念:事件-属性-值:

事件:用户在产品上的行为

属性:描述事件的维度

值:属性的内容

之所以引入这一组概念,是因为灵活运用事件-属性-值的结构,将极大地节省事件量,提高工作效率,使后续的数据洞察和交叉分析更精准。

继续以某电商JS产品(上图)为例,事件记录了用户的行为,我们可以知道用户A几点几分进入了商品详情页,但很多分析场景下我们更需要知道用户进入的是哪个商品页以及其他业务属性,通过属性可以采集当前页面的商品名称、商品ID、商品类型等。

2.webp.jpg

将数据采集需求交由开发人员,进行埋点,将下文这段代码放入对应的页面。

zhuge.track(\\’进入商品详情页\\’, {

\\’商品名称\\’ : \\’【联通赠费版】Apple iPhone 7 Plus 128G 黑色 移动联通电信4G手机\\’,

\\’商品价格\\’ : 6588.00,

\\’商品一级分类\\’ : 手机,

\\’商品品牌\\’ : \\’Apple\\’});

PS:属性名称不能超过255个字符,属性值不能超过200个字符

再聊聊采集时机,通常有3种采集时机,包括:用户点击(click)、网页加载完成、服务器判断返回。在设计埋点需求文档时,采集时机的说明尤为重要,也是保证数据准确性的核心。

举个例子,在采集过程中如果没有明确时机,当用户点击了注册按钮,由于用户输入了错误的注册信息实际没有注册成功,可能仍然会进行记录,这样在统计注册成功事件的时候就不是准确的。而正确的采集时机描述应该是“服务器返回注册成功的判断”。

当然,同一用户行为或动机,可以基于采集需求进行多次标记,比如注册按钮,既采集用户的click行为(用户点击注册就表明有注册动机),也可以采集注册结果。事件设计为“用户点击立即注册”“注册成功”,采集时机对应“click”和“服务器返回注册成功的判断”。

三、事件的分析

当我们对事件代码采集后,他只是一个基于时间序列的记录(用户A,几点几分,在什么样的网络环境设备环境下发生了什么行为),想要指导业务增长,需要构建一些分析模型。对事件的分析通常有事件触发人数、次数、人均次数、活跃比四个维度的计算。

人数:某一事件(行为)有多少人触发了

次数:某一事件(行为)触发了多少次

人均次数:某一事件(行为)平均触发多少次

活跃比:在一个时间区间内,触发某一事件的人数占当前时间段内所有活跃人数的比

事件以及“事件-属性-值”的结构,让我们在日常的业务分析中,可以更直接快速的掌握数据波动趋势。

1、人数:触发某一事件的用户数

3.webp.jpg4.webp.jpg

诸葛io教育培训demo(虚拟数据)

如上图所示,最近7天,通过“查看课程详情-搜索课程-在线试听”的人数分别为1764人、1049人、609人。

2、次数:某一事件被用户触发的次数

5.webp.jpg6.webp.jpg

诸葛io新零售demo(虚拟数据)

通过对用户群、事件属性的筛选和对比,我们发现,与来自搜狗的用户相比,来自百度的用户更喜欢使用微信支付。

3、人均次数:触发某一事件的次数/人数

7.webp.jpg

诸葛io新零售demo(虚拟数据)

比值指标,更科学的描述事件。

4、活跃比

在用户行为数据分析的过程中,活跃比是常用指标,活跃比=触发事件的人数/活跃人数,即,触发某一事件的人数占当时活跃人数的比率。

举个例子,某电商产品在近7天,活跃人数有1000人,触发过「查看商品详情」的有300人,那么在最近7天内,「查看商品详情」事件的活跃比是30%。

8.webp.jpg

诸葛io新零售demo(虚拟数据)

四、事件的管理

企业无论是自建用户行为数据分析平台还是采购第三方,对事件的管理都是产品、运营等业务人员工作流中非常重要的一环。当采集和分析数量非常多(可能会多达几百上千)的用户行为事件时,事件查找和组织就变得不够方便。

9.webp.jpg

诸葛io教育培训demo(虚拟数据)

因此,事件的分组和重要事件(星标事件)的标注就显得尤为重要,当事件很多时,可以对事件进行分门别类地管理。同时,可以从产品业务角度将重要的用户行为标注出来,以便可以在分析时方便、快捷地查找常用、重要的事件。

数据驱动增长,从科学的构建事件模型开始,以事件-属性-值为逻辑的事件模型,极大地提高采集效率,更真实且全面的还原用户与产品的交互过程,通过研究与事件发生关联的所有因素来挖掘用户行为事件背后的原因,快速定位影响转化的关键点,提高运营效率。此外,事件模型也是漏斗模型、自定义留存模型、全行为路径分析模型的基础,后续我们将陆续解读,每周二更新敬请关注。

 

(三)漏斗模型

一、什么是漏斗分析模型

漏斗分析模型,简单来讲,就是抽象产品中的某一流程,观察流程中每一步的转化与流失。

1.png

比如:教育培训类产品的用户,从首页进入到最终完成支付的行为,大多需要经过搜索课程,查看课程详情、点击购买、立即支付、支付成功,我们需要将按照流程操作的用户进行各个转化层级上的监控,寻找每个层级的可优化点;对没有按照流程操作的用户绘制他们的转化路径,找到可提升用户体验,缩短路径的空间。

这里回答文章开始的第一个问题,通常来讲,漏斗分析都以人数来统计,为什么不按照次数来统计呢?我们看一个例子。

假设某漏斗模型是A→B→C→D,如果用户从A→B再→B再→B(假设A是用户进入课程详情页的次数,B是点击购买的次数,也就是这个人重复添加到支付页面)那漏斗的第二步统计的次数可能会大于第一步统计的次数,这也违背了漏斗分析模型的意义。

以人数来统计,就是次数去重以后基于时间序列的统计。一个用户只要做过从A到B,无论做了多少次,都是一个A到B的转化,当然,这里边有个非常关键的限定,就是转化周期限定,1天,2天,一个会话······也就是用户从A→B发生的时间周期,只要他在一个时间周期内完成了从A→B,就记为一次转化。

2.png

那么,有没有使用次数作为统计的呢?比如:我们可能会分析,一个新课程上线,有多少人看了,又有多少人点击购买,又有多少人买了。你可能也会看,这个课程一共被看了多少次,平均一个人看了几次,然后再评估你的漏斗转化率;你可能还会去看支付成功的这些人,一共看了多少次,平均一个人看多少次。

综上,漏斗以人数为统计口径,并包含了3种转化时间(同一天内/同一个会话内/自定义天数内)的限定,次数用于特定场景的分析。

二、漏斗模型中的新特性

直到现在,依然有很多的产品经理、运营、市场人员在通过excel来计算自己业务流中的漏斗转化率,比如:浏览→客服咨询→预约试听→支付课程 和 搜索课程→点击支付→完成交易 需要在不同的漏斗表格中统计,过程不仅繁琐耗费精力,而且由于只是单纯的数据统计,只能从表格中了解哪一环节用户流失严重,而对于业务指标的提升——提高转化率,则于事无补。

在追求精细化运营的道路上,企业对转化流失分析提出了更高需求,理想的漏斗模型需要具备一些新特性:

1、操作简便:可视化操作

传统漏斗模型需要辅助excel,人工输入每个转化路径的每一步可能的事件,同时需要日常维护和实时同步更新,一方面效率低下,数据统计和表格的使用都有一定的门槛;另一方面在竞争激励的市场环境下,很可能因为统计数据的滞后,导致业务上的损失。

3.png

诸葛io在线教育demo数据之创建漏斗

新型漏斗模型,可以打破技术门槛,让业务人员可以通过可视化的方式完成漏斗操作,快速直观的查看转化情况。

2、不只是统计,而是数字背后的人

统计不是目的,指导业务增长才是最重要的,运营的核心任务之一就是提高转化率,因行业不同,这个转化率可能是注册转化率、绑卡转化率、预约试听转化率、首次投资转化率、付费转化率等,而提高转化率的手段,除了让转化路径最短和优化每个节点的用户体验外,更多的需要运营人员对每一环节流失掉的用户及时的采取召回策略。举个例子,来看看是如何通过漏斗模型提升转化率的。假如我们要提高注册转化率时,根据下图漏斗模型:

4.webp.jpg

诸葛io在线教育demo数据

我们发现 从发送手机验证码-完成注册 这一步有24人流失,而这一部分流失是完全可以避免的,我们只需找到是何原因导致用户已经完成发送验证码的行为,但是仍然没有完成注册的,即可极大概率的召回这些用户。通过点击转化详情,即可查看每一个流失用户的用户档案。

5.webp.jpg

诸葛io在线教育demo数据之用户档案

根据用户档案,一方面可以针对不同用户各自的流失原因进行直接触达,比如发个短信或者打个电话直接沟通;另一方面还可以快速锁定原因,比如上图中所示的“服务器忙”,可以将原因反馈给相关技术部门进行处理,修复故障。

三、如何构建漏斗模型

用户往往并不会按照开发者“规划”好的行为路径使用产品,甚至会让你感叹你的用户正在做布朗运动,那么当你不知道究竟你的用户经过哪些路径最终到达核心行为时,当你正在被构建漏斗模型困扰时,你还有一个全局视角来帮你构建漏斗模型的工具——太阳图。

6.webp.jpg

用户行为路径之太阳图

为了让你对“用户如何使用产品”有更全面的把握,太阳图将全部用户的所有行为路径在一张图中直观且清晰的呈现出来:圆弧层数越多,说明用户的行为轨迹越长;圆弧弧度越大,说明用户触发该行为越多。

此外,通过太阳图(点我,了解更多),你更有可能发现那些被你忽略的用户行为路径,因为并不是所有用户都会按照咱们期待的核心路径使用产品,那些“误入歧途”的用户行为在太阳图中将一览无遗,此时,你只需快速建立漏斗分析原因,找到运营策略。

通过产品每一个设计步骤的数据反馈得出产品的运行情况,然后通过各阶段的具体分析改善产品的设计,提升产品的用户体验,这就是漏斗模型的核心价值。漏斗分析,仅仅是帮助我们分析问题的工具,重要的是要培养数据分析的思想:通过精细化的拆分,从宏观的视角,将复杂的事件分析拆分为独立的归因分析。

漏斗分析到这里就结束了,下一篇是热图分析模型,诸葛君将继续解读如何改善用户体验,提升转化,帮你更好地运用数据驱动产品运营。

 

(四)热图分析模型

一、什么是热图分析模型?

就像广场草坪,如果设计得不合理,没有铺设石子步道,很多人会抄近道横穿草坪直达对面的建筑物,时间长了即使没有路也走出路来,如果从高处俯瞰的话,很容易判断出哪个建筑物哪个位置的店铺是客流最集中的“旺铺”。同样的,我们也希望了解用户在网页上的关注点在哪里,尤其对于官网首页来说,信息密度极高,用户究竟是如何点击?如何浏览的?

1.webp.jpg

网页热图示意图

按计算维度划分,热图可以分为点击热图和浏览热图。点击热图追踪的是鼠标的点击情况,进行人数、次数统计并基于百分比进行热力分布,浏览热图(也称注意力热图)记录的是用户在不同页面或同一页面不同位置停留时间的百分比计算。前者基于点击,后者基于停留时长。

点击热图又分为两种,一种是鼠标的所有点击,一种是页面可点击元素的点击。前者可以追踪页面上所有可点击和不可点击位置的被点击情况,后者只追踪页面上可点击元素的点击情况。两者各有不同的应用场景,但当用户行为数据的采集和分析被重视起来后,热图与热图之间的差别逐渐变得更模糊。因为对于同一个分析目标和需求,有时候我们能找到更优的分析模型和方案。

当然,诸葛io的热图分析模型,我们又增加了一些更重要的特性。

二、热图分析模型中的新特性

1、面向特定人群的分析与人群对比

过去对人群的划分基于环境属性,比如ip、设备、网络环境,基于用户生命周期的划分仅停留在新老用户的区分。缺少对于用户更深维度的划分,比如理财产品要为投资用户和未投资用户提供两个落地页,在诸葛io分析平台,可以快速进行用户分群,并交叉热图分析模型进行对比。

2.webp.jpg

某理财产品

(图示数据为脱敏数据)

通过点击分析,我们可以看到不同用户登录后在首页的整体流量走向:已投资用户对“我的账户”更感兴趣,其实也很容易猜想到原因:同样在登录状态下,已投资用户更关注收益情况和资金安全情况,而未投资用户更关注理财产品特点、收益和安全资质,同时由于并没有充钱所以并不关注账户。因此,我们可以根据不同用户的需求提供更具个性化的首页。

2、聚焦分析

热图在视觉上给我们更直观的对比,对于关键的分析,我们依然需要进行量化,在诸葛io的热图分析模型,我们加入了聚焦分析,每一个热度背后的点击统计和百分比都有清晰的计算。特别是对于特定人群和人群对比的数据计算。

3.webp.jpg

某理财产品

(图示数据为脱敏数据)

tips:

点击率= 点击次数/当前页面的浏览次数

聚焦率=点击次数/当前页面的点击总次数

三、应用场景

点击分析让产品设计人员、运营人员更加直观的对比和分析用户在页面的聚焦度,页面浏览次数,页面内各个可点击元素的点击人数等数据指标。

1、落地页效果分析

落地页是用户与产品交互的第一“触点”,落地页的设计与体验将直接影响用户的转化,通过点击分析即可快速衡量落地页的转化率。

4.webp.jpg

麦子学院官网首页

(图示数据为脱敏数据)

我们以麦子学院为例,设计师会通过页面点击情况分析用户进入落地页后的流量走向,用户更聚焦哪些功能?哪些功能流量大但却比较隐蔽?对于大流量的入口是否还有其他信息可以一同展示从而增加曝光?对比新老用户、不同渠道来源、购买与未购买等不同用户群的行为差异,针对不同客群特点采取有针对的活动策略。

2、首页流量追踪

首页在官网中的重要性是非常高的,首页设计的合理性关系着用户是否能够找到信息和完成任务。

5.webp.jpg

某理财产品官网首页

(图示数据为脱敏数据)

3、关键页体验衡量

6.webp.jpg

诸葛io旧版官网首页

(图示数据为脱敏数据)

以诸葛io官网为例,由上图旧版官网首页点击分析的界面,可以看到“注册试用”在官网上有两个位置,一个位于右上角,一个位于“体验demo”的左侧,但是点击人数都不高,从业务角度讲,引导用户尽快完成注册和体验demo是首页中最核心的诉求,通过点击分析数据可以为页面改版找到一些方向:比如,在合适的位置将“注册试用”改为“免费试用”,调整话术减少用户的抵触心理。

作为信息时代兼具客观性和易用性的数据分析模型——热图分析,可视化的数据呈现,帮助你快速发现数据背后的问题,为网站的优化提供有力的数据支撑,关注点击行为的同时更关注不同特点用户的浏览习惯,为用户呈现个性化的产品价值。

 

(五)留存分析模型

一、留存定义和公式

定义:满足某个条件的用户,在某个时间点有没有进行回访行为

公式:若满足某个条件的用户数为n,在某个时间点进行回访行为的用户数为m,那么该时间点的留存率就是m/n

以我们常用的指标举个例子:“新增用户日留存”,就是某天新来的用户,第二天打开app或网站的比例,第三天打开app或网站的比例,第七天打开app或网站的比例,第N天打开app或网站的比例。

1.webp.jpg

图1:新增用户留存

这一指标就是N-day留存,即第几日留存,这里的“日”可以是“周”,也可以是“月”,大家现在普遍认识的用户留存,一般都是“N-day”留存了。

除了N-day留存,业内常见的留存分析方式还有“Unbounded留存”、“Bracket留存”,这3类留存的区别就在于时间条件的差异,具体关注哪种留存,需要根据业务来定。

-Unbounded留存(N天内留存)

Unbounded留存就是我们常说第N日内留存,N-day留存是只计算第N天完成回访行为的用户,Unbounded留存会累计计算N天内所有完成过回访行为的用户。

-Bracket留存 (自定义观察期留存)

N-day留存和Unbounded留存都是按照独立的天/周/月为观察单位计算,但有时候我们不希望受限于这种固定时间度量,我们希望划分为几个观察期,比如现在默认一个观察期就是一天或者一周或者一个月,但有时候,我们可能会这样划分。

第一个观察期:次日

第二个观察期:第3日-第7日

第三个观察期:第8日-第14日

第四个观察期:第15日到第30日

以电商类产品为例,4月9号新增用户的第三天留存就是4月12日进入产品的用户比例,即N-day留存;4月10号、4月11号和4月12日3天中任意一天进入产品的去重用户比例,即Unbounded留存;如果自定义一个观察期,比如第第3日-第7日的留存就是4月12日-4月16日的中任意一天进入产品的去重用户比例,即Bracket留存。

二、自定义留存

上述三种留存方式,都是对时间的限定,对留存的定义都是用户打开了APP或进入了网站。而越来越多的产品开始关注自定义留存,因为他们更想知道基于自己业务场景下用户的留存情况。比如阅读类产品会把看过至少一篇文章的用户定义为真正的留存用户,电商类产品会把至少查看过一次商品详情定义为有效留存。所以,对留存的行为有了自定义。

2.webp.jpg

图2:回访行为是查看课程详情的7日留存数据

-初始行为:初始与回访是相对的概念。

-回访行为:与初始行为的设定是并且关系。用户的初始行为可以理解为上一次行为,回访行为即理解为下一次行为。

对初始行为和回访行为的设定本质上是在进一步筛选用户群。在滴滴的一次增长分享会曾提到过“抢了红包的用户后来打了车的日留存”,即初始行为是抢了红包,回访行为是打了车。“抢了红包的用户打了车的3日留存”即初始行为是抢了红包,回访行为是打车,看这部分人的第三天留存。

三、场景举例

签到是一个非常古老的功能,过去在一些社区平台也比较常见,但诸葛君发现,越来越多的产品又开始有了这个功能,甚至一些金融产品。签到的核心是通过培养用户的登录习惯,延长用户的生命周期。(当然,签到功能也会和积分等其他可兑换的奖励所绑定),而签到功能本身,就是一个纯粹的为了提升用户回访的功能,这一功能到底有没有吸引用户回访,用自定义留存分析功能再合适不过了。

假设这一功能是面向所有用户,当然,你也可以去看目标用户群的留存情况。如下图:

初始行为:任意行为

回访行为:签到成功

3.webp.jpg

图3:回访行为是签到成功的7日留存数据

从上图可以看出,签到功能带来了很好的用户粘性。很多用户回访都会触发签到功能,功能价值得以衡量和提现。

随着用户规模的饱和,获客成本大幅提高,用户可能因为一点不爽分分钟就卸载掉你的应用,此时提高留存就显得尤为重要,因为不管是花费在金钱还是资源上的成本都会更低,留存已成为检验产品的重要指标,自定义留存模型,通过更灵活的行为和时间条件的设置,让留存指标更精细化,让运营策略更聚焦,更有效。

 

(六)粘性分析模型

一、深刻理解留存

对大多数产品而言,我们会用留存来整体评估产品的健康度,你也可以理解为,留存是在“某一天有多少人使用”的维度下进行的计算,它统计了来自同一群人,放在时间的跨度下,计算每一天回访用户占这群人的百分比。以新增留存为例,某一天或一段时间新增的用户,第2天还有多少人使用(次日留存),隔2天还有多少人使用(2天后留存),隔了7天还有多少人使用(周留存),通常我们会以此来判断产品留存用户的能力,以及用户的价值。

1.webp.jpg

图1:7日留存

二、粘性:以用户视角,科学评估产品留存能力

从精细化运营的角度来看,你可能有过这样的疑问,在某一段时间活跃的用户为用户群中:

隔7天来的用户有多少?

有多少用户是中间6天一天都没来?

有多少用户是连续访问了7天?

第30天来的用户中,有多少中间29天没有访问过?

有多少用户是有连续访问的?

有多少用户又是每周都来2-3天的?

他们分别占比多少?

如果要整体评估产品健康度,我们认为,你可能还需要知道:“一个人使用了几天”,也即很多产品一直无法衡量的维度:粘性。因为由粘性你可以知道:一款产品,用户一个月使用几天,使用大于1天的有多少,使用大于7天的有多少,你也可以再扩展到周的维度,一周使用大于2天的有多少,一周使用大于5天的有多少?以此来综合评估产品的健康度。

当我们将这一模型进行可视化, 如下图,选择“任意行为”,按周查看,即为用户平均每周使用产品的天数分布。

2.webp.jpg

图2:任意行为的粘性分析

如上图所示,我们可以看到近四周所有使用产品的用户中,平均每周使用2天、3天及以上的用户占比。

当然,你更可以评估某一功能的粘性,比如我们选择「开始签到」来分析新上线的社区功能的粘性:

3.webp.jpg

图3:「开始签到」模块的粘性分析

说明:在计算各个天数的人数占比情况时,我们会以在所选时间段内触发过该事件的人为基数(第一天为100%)。比如,近四周的活跃人数是200,触发过「开始签到」的人是100,其中一周内触发过「开始签到」2天以上的是20人,那么在粘性分析中,「开始签到」2天以上的人数占比是 :20 / 100 = 20%。我们不会以活跃人数为基数,若要看在整个活跃用户中使用过某个功能的人数占比,可通过「事件」中的「活跃比」功能实现。

三、场景举例

以诸葛io服务的客户——向上金服为例,作为一家运营4年的互联网金融服务平台,同所有互金产品运营思路一样,一方面,需要不断强化用户对产品的信任感;另一方面,通过完善积分体系/搭建商城等手段,不断开拓更多用户与产品交互的场景,从而提高用户留存和粘性。

此外,我们可能还会需要对比两个不同用户群的粘性情况,比如我们想了解一下「已投资用户」相较于「未投资用户」来讲,对「查看股票市场」的依赖程度有何不同:

4.png

图4:不同用户群对于「查看股票市场」的粘性对比

(数据为脱敏数据)

如上图所示,我们发现,与未投资用户相比,有过投资行为的用户更关注股票市场的动态,对股票市场这一功能模块的粘性更大。

通过粘性分析,让你了解产品或某个功能粘住用户的能力如何,除了常用的留存指标外,粘性从更多维度让你了解到用户是如何使用产品的,哪个功能是被用户所喜欢的,不同用户对同一功能在使用上有哪些差异,帮你更科学的评估产品和功能,更有效的制定留存策略。

 

(七)行为路径分析模型

一、行为路径分析

单体洞察、用户分群、行为路径分析是用户行为数据分析的三大利器。单体洞察满足了我们对单个用户的特征洞察,用户分群满足了我们对全量用户或某一特征人群的洞察,而行为路径分析是对用户产生的行为数据的可视化分析模型,某一人群交叉行为路径分析模型,可以快速洞察到这一群体的行为特征。常用的行为路径分析模型有漏斗分析模型和全行为路径分析模型。

在分析既定的行为路径转化时,我们会采用漏斗分析模型,你会看到用户在我们设定的路径中的每一步转化,比如从查看商品详情到最终支付成功每一步的转化率,从而对既定路径不断调优。

1.jpg

图1:注册转化漏斗

但是,用户在产品内的行为路径可以说是个黑盒子,界面内的每一个按钮、信息都会影响用户的下一行为。为此,我们需要拥有一个更高的视野去俯视用户的行为,打开这个黑盒子,而这一分析模型就是全行为路径分析模型。

二、全行为路径分析模型

全行为路径分析是互联网产品特有的一类数据分析方法,它主要根据每位用户在App或网站中的行为事件,分析用户在App或网站中各个模块的流转规律与特点,挖掘用户的访问或浏览模式,进而实现一些特定的业务用途,如对App核心模块的到达率提升、特定用户群体的主流路径提取与浏览特征刻画,App产品设计的优化等。

常用的全行为路径分析模型有两种:

1、树形图

2.jpg

图2:树形图

如上图所示,从会话开始,每一行代表用户的一步。树形图最多展示五步。第一步是会话开始,第二步,用户通常会进行搜索课程、查看课程详情、注册、登录、开始付款。从上图可以看出,在用户的使用中,绝大部分的用户打开app后会进行课程搜索。你可能会问横向相加为什么不等于100%?

如图示,转化率计算的是用户的每一次会话,同一个用户,可能上午进入app后进行了搜索,下午可能进入app后直接在首页进行了查看课程详情,同一个人在不同会话可能会有不同的行为。分母是所有使用的用户,那计算每一步的时候分子会出现同一个人。所以百分比相加大于1。

2、太阳图

树状图通过用户行为的步骤纵向进行了展示并基于每一步的比例进行了从高到底的排序,相较于树状图,太阳图的全局视野更清晰,你可以用一个平面的视角看用户的使用情况。

3.jpg

图3:太阳图

如上图所示,每一环代表用户的一步,不同的颜色代表不同的行为,同一环颜色占比越大代表在当前步骤中用户行为越统一,环越长说明用户的行为路径越长。

你可以把路径设计过程中我们忽略的步骤添加到漏斗进行监控,并对用户的这一路径做用户动机分析,并不断进行优化。

三、场景举例

2.jpg

图4:树形图

我们以上图中的树形图为例,这是一个教育培训类产品,我们发现75.2%的用户都是从“搜索课程”这一行为开始的,说明“搜索”是这一产品的重要功能之一,搜索优化得越好,购买下单的可能性就越大,同时有助于了解用户的真实需求。

但是我们还发现,从第二步之后的数据来看,一次的搜索行为显然没有帮用户找到他所需要的课程,因为,他并没有直接进入“查看课程详情”。

对于用户来说最理想的体验是,在输入关键词后,快速找到其所需要的商品/课程/服务,对于产品来说,就是在用户还没有失去耐心前完成搜索转化,那么针对上图的场景,我们该如何提升一次搜索转化率呢?

除了识别不利于转化的关键词,通过放置搜索结果顶端或者底部来升级或降级产品外,你还可通过洞察用户行为数据来优化:

比如:凡搜索“”、“数据驱动”、“数据思维”等关键词的用户最终都点开查看了A课程,那么我们即可根据数据相关性将搜索词“数据”与A课程关联到一起。

比如:将近期用户高频搜索的关键词同步到前端页面,设置成可点击元素,提高搜索效率。

比如:通过分析用户的搜索行为,为用户补充商品/课程/服务、优化搜索结果页结构、优化搜索推荐等提供数据支持。

总之,透过用户行为数据深挖用户表面行为背后真实、本质的需求,唯有通过数据看透本质需求,才能真正触达用户的“心”。

用户运营的本质是精细化运营,而精细化运营的前提是,对可真实还原用户与产品交互过程的用户行为的洞察,全行为路径分析让你更直观的看到用户使用产品的状况,了解用户的来龙去脉,找到用户最有可能完成核心转化的行为,通过产品上以及运营策略上的引导,持续挖掘更多用户的价值。

 

(八)用户分群模型

一、分群和分层

分群是对某一特征用户的划分和归组,而分层,更多的是对全量用户的一个管理手段,细分用户的方法其实我们一直在用,比如我们熟悉的RFM模型:

RFM模型是从用户的业务数据中提取了三个特征维度:最近一次消费时间(Recency)、消费频率 (Frequency)、消费金额 (Monetary)。通过这三个维度将用户有效地细分为8个具有不同用户价值及应对策略的群体,如下图所示。

1.webp.jpg

图1:RFM模型

当然,这一模型更接近于对用户的层级划分,他本质上是一个分层模型。分群和分层稍有差异,你可以把分群理解为是分层的手段,只是分层通常我们会基于用户生命周期或用户价值来划分,各层级用户相加等于全量用户,A用户在第1层,那他一定不会同时出现在第2层。但如果将用户分群,那么A用户可能在1群,也可以同时出现在2群。

理解了分群和分层的区别,我们具体来看,当前的用户分群模型又在解决什么问题以及又有哪些新特性。

二、基于用户行为数据的分群模型

当我们能获取到足够多的用户数据,特别是用户行为数据,并且数据实时(包括分钟级、小时级实时),那对用户划分需求就提出了更丰富的要求,比如面向特定人群的营销、个性化的界面、找到流失人群以及更灵活的用户分层模型。

过去对用户群的划分都是基于标签,用户买过海外旅游产品,那可以打一个高端旅游消费的标签,当有相同业务需求的时候就会进行定向销售。我们总说,行为即标签,但标签更多的是在对既定结果下定义,当回到行为数据本身,你会发现,对用户的洞察可以更精细更溯源。

比如用户看过海外旅游产品三次,即使没有购买,那我们可以把他定义为待转化用户,从而在结果产生前进行有利于我们的引导。他让用户分群的能力回到了用户的整个转化过程中。

你不需要不停地给用户打成百上千个标签,用历史行为记录的方式可以更快的找到你想要的人群。这里有四个你需要知道的用户分群的维度:

1、用户属性

所谓人物基础属性指的是:用户客观的属性,描述用户真实人口属性的标签,比如:年龄、性别、城市、浏览器版本、系统版本、操作版本、渠道来源等就是用户属性。

比如:某天气类工具型产品,在北京进入雾霾季时,可针对北京地区的用户推送防霾关怀,提供防霾用品信息,一方面比起向全量用户推送一定会打扰到“清新”地区的用户,另一方面让“霾区”用户获得了一种“宝宝被重视了”的贴心体验。

另外,对于一个产品来讲,迭代是产品成长的必经之路,因此根据用户所使用的“系统版本”将用户进行分群,即可实现衡量改版前后的用户行为差异及改版效果。

2、活跃于

活跃用户是用户运营的重点,对活跃用户的营销更有可能转化为忠实用户,因此,快速找到某一自定义时间内的活跃用户,通过洞察活跃用户的行为特征,科学客观的衡量活动/功能的效果,从而更好的指导运营策略。

2.webp.jpg

图2:诸葛io在线教育DEMO数据之“活跃于”用户分群

说明:如上图所示,假如某电商计划在母亲节期间(5月8-5月15日)上线全品类的促销活动,为了获得更高的销售转化,运营团队将活跃于4月30日-5月6日的用户筛选出来,将第一波专题活动进行小范围的测试,根据活跃用户的点击及转化情况衡量专题页效果,并将运营策略调整到最优再全量上线。

3、做过/没做过

用户行为直接反映出用户与产品交互的“亲密度”,比如,对于互金类产品,完成“绑卡”的用户对平台的信任度一定高于“未绑卡”用户,因此触发指定事件的用户可作为用户分群的重要维度。

3.webp.jpg

图3:诸葛ioDEMO数据

说明:以互联网金融产品为例,将最近30天内成功支付起投金额为1000元的理财产品大于等于1次,且查看理财产品详情大于等于5次的用户定义为高价值用户,如果最近恰好有某起投金额在1000的理财产品上线,即可通过精准触达这部分用户群持续挖掘用户价值。

4、新增于

4.webp.jpg

图4:诸葛ioDEMO数据

新增于这个维度,同样有2个条件可选择:最近/固定时段,以此精确筛选出新增用户的时间范围,灵活找到特定时间段内的特定用户群中。以电商类产品为例,如果你在8月1日-8月15日发起了一次大规模的市场拉新活动,那么上图的筛选即可找到活动期间新增用户群,进而评估活动效果及后续转化情况。

三、挖掘场景——用户视角之「新增后」

用户分群其实是最常做的,但是如何把群组划分这一操作变得更便捷和高效,诸葛进一步优化了这一模型,也足以满足很多场景下的用户分群需求,我们以业务中常用的场景为例,具体看看如何以用户视角挖掘价值。

「新增后」即计算用户触发某行为的时间和用户新增的时间,这个概念是以用户“路转粉”为起点的时间周期,而不是传统的自然月/自然周为时间周期,因为每个用户的新增时间都不相同,在这种条件下,我们会逐个用户单独计算,确定每一个用户是否在其新增后的 N 天内做过某事。

这个维度的好处,就是以用户视角洞察用户行为,快速找到用户购买的决策周期:用户新增后多少天完成核心转化,用户新增多少天使用产品的频次如何?咱们举个例子来说明。

5.webp.jpg

图5:诸葛io在线教育DEMO数据之手机潜在消费用户

说明:诸葛io支持多条件筛选用户(并且 并且 并且···),比如将首次来源的广告关键词是华为手机和网上购物,首次来源域名是百度,这是对于用户渠道来源的筛选。此外,将新增后1天内就完成注册且查看了“耳机”类商品大于等于3次的用户,定义为“耳机”潜在消费用户,通过新增后1天这一筛选条件,即可快速精准定位出潜在用户群,通过这样的筛选,便可实现有针对性的触达,将耳机品类的专题活动发送给这些潜在用户,引发用户下单的欲望,提升购买转化率。相较于传统意义上的产品视角——以自然月维度来计算的新增来说,更科学,更具有指导意义。

在移动互联网时代,发展和维系用户是互联网企业占据市场的核心手段,挖掘用户需求、了解用户行为习惯成为产品设计和用户运营必不可少的一环。但是,单从宏观的数据和指标分析中,有时很难做到深入理解用户的需求偏好和行为特性。用户群细分分析可以帮助产品经理和运营人员更深入地理解各细分用户群的差异,以便用于差异化的产品设计或运营活动的投放,更好地满足用户需求,提高用户粘性。

 

作者:诸葛君

文章标签: ,

0 条评论 834 次阅读

  1. 既来之,则言之。

发表评论

Top